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ABSTRACT

We present a construction of countably infinite, highly connected graphs
and digraphs, which shows that several basic connectivity results on fi-
nite graphs, including Edmonds’s branching theorem, cannot be ex-
tended to the infinite case.

1. INTRODUCTION

The most fundamental graph connectivity result is Menger’s theorem. A cut in
a digraph D is defined as follows: If V(D) is partitioned into sets A and B, then
the set E of all arcs from A to B is cut. If s € A we say that E is a cut from s,
and if ¢+ € B we say that E is a cut to t. Now Menger’s theorem can be formu-
lated as follows:

(1) If s and ¢ are vertices in a finite digraph D, then D contains a cut E from
s to ¢ and a collection % of pairwise arc-disjoint directed paths from s to
t such that each path in P contains precisely one arc of E and every arc
of E is in a path of &. In particular, |?| = |E|.

A branching from s in D is a spanning tree T in D such that all arcs of T are
directed away from s. Edmonds’ branching theorem can be formulated in a way
analogous to (1).
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(2) If s is a vertex in a finite digraph D, then D contains a cut E from s and a
collection T of pairwise arc-disjoint branchings from s such that |7| = |E|.

It is easy to obtain (1) from (2). Let k& be the smallest cardinality of a cut
from s to t and add, for each vertex, u # ¢, k + 1 arcs from ¢ to u. Then apply
(2) to the resulting digraph. By a similar trick one can derive (1) from the fol-
lowing result of Mader [3]:

(3) If s and ¢ are vertices in a finite (k + 1)-arc-connected digraph D, then
D contains a directed path P from s to ¢ such that D — E(P) is k-arc-
connected.

Mader [3] suggested that (3) might also be true for infinite digraphs.

Nash-Williams [5] proved that every 2m-edge-connected finite graph admits
an m-arc-connected orientation. Combining this with (3) we get the following
for k even:

(4) If 5 and ¢ are vertices in a finite (k + 2)-edge-connected graph G, then G
contains a path P from s to ¢ such that G — E(P) is k-edge-connected.

For k odd, (4) was proved by Mader [4].
Nash-Williams’s orientation theorem combined with (2) also implies the fol-
lowing:

(5) Every finite 2k-edge-connected graph contains & pairwise edge-disjoint
spanning trees.

(5) also follows from the characterization (due to Tutte, Edmonds, and Nash-
Williams, see [8]) of the finite graphs having no k edge-disjoint spanning trees.
Oxley (6] proved that this characterization does not apply to the infinite case
for k = 2. However, Oxley’s examples do not disprove (5) in the infinite case.
The following result in [7] has some analogy with (3) and (4):

(6) Every finite (k + 3)-connected graph G contains a cycle C such that
G — V(C) is k-connected.

Here we present a construction that shows that none of (2), (3), (4), (5), and
(6) are true in the countably infinite case.

2. THE CONSTRUCTION

Theorem. For each natural number k = 2 there exists a countably infinite
graph G containing two vertices s and ¢ such that G has a strongly k-connected
orientation D, and such that, for every path P from s to t, G — E(P) is discon-
nected.
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Proof. It is easy to see that there exists a graph H containing vertices
Yy, V,, ...,V such that the distance between any two of v, ..., v, is at
least k£ + 2 and such that H has an orientation that is strongly &-connected. (For
example, take the disjoint union of many large sets A;, A,, . . . and add all edges
between A; and A,,, for i = 1,2,... .) Now define a sequence of finite graphs
G,,G,, . .. recursively as follows: Let G, = H and put V| = V(G)) = V(H).
Let s = v,, t = v,. Suppose we have already defined G, (» = 1) and that the
vertex set of G, can be written as the disjoint union V, UV, U -+ - UV, U V,.
Now consider a connected component W of the subgraph of G, induced by V.
We subdivide every edge of W as follows: Let e be any edge of W and let g be
the number of distinct paths of length & in W containing e. Now we subdivide e
by inserting g “new” vertices of degree 2 on e. We let V, be the union of V,
and all the new vertices. Let e, e,, . . . , e, be the edges of any path of length
in W and let u; be one of the new vertices on ¢; for i = 1,2,...,k. Then we
add a copy of H and we identify v; and u; for i = 1,2, ...,k We do this for
each path of length £ in W and we make the vertex identifications such that all
the added copies of H are disjoint. In other words, each new vertex is identified
with a vertex in precisely one copy of H. We denote the resulting graph by G,
andletV,,, = V(G,,)\(V, UV, U - UV,).

Now let G be the graph with vertex set V, U V, U - - - such that the neigh-
bors of a vertex v in V, are precisely the neighbors of v in G,.,. Note that we
may think of G as composed of copies of subdivisions of H. Since H has a
strongly k-connected orientation D' we can use D’ to obtain an orientation D,
of G, and an orientation D of G. It is easy to prove, by induction on n, that
each D, (and hence also D) is strongly k-connected.

Now consider any path P in G from s to ¢. Let n be the largest number such
that P intersects V,. Then P is a subdivision of a path P’ in G,. Let P" be a
subpath of P’ such that the ends of P” are in V,_, and all intermediate vertices
of P" are in V. Then P” is a path in a copy of H connecting two vertices

in {v,,v,,...,v,}. Hence P" minus the ends is a path with at least k edges
e,,€,...,€,...and with vertices in V,. In G,,, there is a copy of H whose
vertices v;,v,, . . ., v, are identified with new vertices on e, ¢,, . . ., ¢,. (In par-

ticular, V,, is nonempty.) That copy of H becomes separated from the rest of
G,., when we delete E(P) from G,,,. It also follows from the construction of G
that G — E(P) is disconnected. 1

The theorem shows that (2), (3), (4), and (5) are false in the infinite case even
if the connectivity of the graph or digraph is large and we only seek two trees in
(2), (5), or a connected graph after the path deletion in (3) and (4). The construc-
tion in the proof of the theorem also shows that (6) is false in the infinite case
(even if we replace G — V(C) by G — E(C)). We just let H be a k-connected
graph of girth at least k containing vertices v, ..., v, no two of which are
joined by a path of length less than k£ + 2. One quick way to see that such a
graph exists is to use the existence of highly chromatic graphs of large girth
combined with the result of Mader (see [8]) that a graph of minimum degree at
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least 4k contains a k-connected subgraph. Note that a graph of girth at least k*
contains k vertices, no two of which are joined by a path of length less than £.
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