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ABSTRACT 

We present a construction of countably infinite, highly connected graphs 
and digraphs, which shows that several basic connectivity results on fi- 
nite graphs, including Edmonds’s branching theorem, cannot be ex- 
tended to the infinite case. 

1. INTRODUCTION 

The most fundamental graph connectivity result is Menger’s theorem. A cut in 
a digraph D is defined as follows: If V(D) is partitioned into sets A and B ,  then 
the set E of all arcs from A to B is cut. If s E A we say that E is a cut from s, 
and if t E B we say that E is a cut to t. Now Menger’s theorem can be formu- 
lated as follows: 

(1) If s and t are vertices in a finite digraph D ,  then D contains a cut E from 
s to t and a collection 9 of pairwise arc-disjoint directed paths from s to 
t such that each path in 8 contains precisely one arc of E and every arc 
of E is in a path of 9. In particular, 19) = /El.  

A branching from s in D is a spanning tree T in D such that all arcs of T are 
directed away from s. Edmonds’ branching theorem can be formulated in a way 
analogous to ( 1). 
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(2) If s is a vertex in a finite digraph D, then D contains a cut E from s and a 
collection !3 of pairwise arc-disjoint branchings from s such that 15-1 = /El. 

It is easy to obtain (1) from (2). Let k be the smallest cardinality of a cut 
from s to t and add, for each vertex, u # t ,  k + 1 arcs from t to u. Then apply 
(2) to the resulting digraph. By a similar trick one can derive (1) from the fol- 
lowing result of Mader [3]: 

(3) If s and t are vertices in a finite (k + 1)-arc-connected digraph D, then 
D contains a directed path P from s to t such that D - E(P)  is k-arc- 
connected. 

Mader [3] suggested that (3) might also be true for infinite digraphs. 
Nash-Williams [5] proved that every 2rn-edge-connected finite graph admits 

an rn-arc-connected orientation. Combining this with (3) we get the following 
for k even: 

(4) If s and t are vertices in a finite (k f 2)-edge-connected graph G ,  then G 
contains a path P from s to t such that G - E(P) is k-edge-connected. 

For k odd, (4) was proved by Mader [4]. 
Nash-Williams’s orientation theorem combined with (2) also implies the fol- 

lowing: 

(5) Every finite 2k-edge-connected graph contains k pairwise edge-disjoint 
spanning trees. 

( 5 )  also follows from the characterization (due to Tutte, Edmonds, and Nash- 
Williams, see [S]) of the finite graphs having no k edge-disjoint spanning trees. 
Oxley [6] proved that this characterization does not apply to the infinite case 
for k = 2. However, Oxley’s examples do not disprove ( 5 )  in the infinite case. 
The following result in [7] has some analogy with (3) and (4): 

(6) Every finite (k + 3)-connected graph G contains a cycle C such that 
G - V(C)  is k-connected. 

Here we present a construction that shows that none of (2), (3), (4), (9, and 
(6) are true in the countably infinite case. 

2. THE CONSTRUCTION 

Theorem. For each natural number k 2 2 there exists a countably infinite 
graph G containing two vertices s and t such that G has a strongly k-connected 
orientation D, and such that, for every path P from s to f, G - E(P)  is discon- 
nected. 
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Proof. It is easy to see that there exists a graph H containing vertices 
u I ,  u 2 , .  . . , uk such that the distance between any two of u , ,  . . . , uk is at 
least k + 2 and such that H has an orientation that is strongly k-connected. (For 
example, take the disjoint union of many large sets A,,A2, . . . and add all edges 
between A, and A,+, for i = 1,2,  . . . .) Now define a sequence of finite graphs 
C , , G 2 , .  . . recursively as follows: Let GI = H and put Vi  = V(G,) = V(H) .  
Let s = u,,  t = u2. Suppose we have already defined G, ( n  2 1) and that the 
vertex set of G, can be written as the disjoint union V, U V, U * - * U V,-, U V:. 
Now consider a connected component W of the subgraph of G, induced by V:. 
We subdivide every edge of W as follows: Let e be any edge of W and let q be 
the number of distinct paths of length k in W containing e .  Now we subdivide e 
by inserting q "new" vertices of degree 2 on e .  We let V, be the union of V i  
and all the new vertices. Let el, e2, . . . , e, be the edges of any path of length k 
in W and let u, be one of the new vertices on e, for i = 1,2,  . . . , k. Then we 
add a copy of H and we identify u, and u, for i = 1,2,  . . . , k. We do this for 
each path of length k in W and we make the vertex identifications such that all 
the added copies of H are disjoint. In other words, each new vertex is identified 
with a vertex in precisely one copy of H. We denote the resulting graph by G,+, 
and let Vi+,  = V(G,+,)\(V, U V, U * - U V,). 

Now let G be the graph with vertex set V, U V, U * * such that the neigh- 
bors of a vertex u in V, are precisely the neighbors of u in G,,, .  Note that we 
may think of G as composed of copies of subdivisions of H. Since H has a 
strongly k-connected orientation D' we can use D' to obtain an orientation D, 
of G, and an orientation D of G. It is easy to prove, by induction on n, that 
each D, (and hence also D) is strongly k-connected. 

Now consider any path P in G from s to t .  Let n be the largest number such 
that P intersects V, . Then P is a subdivision of a path P' in G,.  Let P'' be a 
subpath of P' such that the ends of P" are in V,-l and all intermediate vertices 
of PI' are in V:. Then P" is a path in a copy of H connecting two vertices 
in {ul, u 2 , .  . . , u,}. Hence P" minus the ends is a path with at least k edges 
e,, e2, . . . , ek , . . . and with vertices in V:. In G,, I there is a copy of H whose 
vertices u, ,  u2, . . . , uk are identified with new vertices on el,  e2, . . . , e k .  (In par- 
ticular, V,+, is nonempty.) That copy of H becomes separated from the rest of 
Cn+, when we delete E(P) from G,,,. It also follows from the construction of G 
that G - E(P)  is disconnected. I 

The theorem shows that (2 ) ,  (3), (4), and (5) are false in the infinite case even 
if the connectivity of the graph or digraph is large and we only seek two trees in 
(2), (5 ) ,  or a connected graph after the path deletion in (3) and (4). The construc- 
tion in the proof of the theorem also shows that (6)  is false in the infinite case 
(even if we replace G - V ( C )  by G - E(C)). We just let H be a k-connected 
graph of girth at least k containing vertices u I ,  . .. . , uk , no two of which are 
joined by a path of length less than k + 2. One quick way to see that such a 
graph exists is to use the existence of highly chromatic graphs of large girth 
combined with the result of Mader (see [8]) that a graph of minimum degree at 
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least 4k contains a k-connected subgraph. Note that a graph of girth at least k 2  
contains k vertices, no two of which are joined by a path of length less than k. 
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